Hi, I'm Robert!
For my fellow teachers, I've constructed a model of teaching that I've summarized as the puncturing of space with pedagogical objects. . . The term "objects which puncture space" may help solidified one's sense of how pedagogy can be described within its new conceptual framework. Teachers who see the world in this manner should become more fully invested in the enterprise of teaching and learning.
Teaching Methematics
S.T.O.R.E.S.
for teachers
S.T.O.R.E.S.
for students
Handbook
The Euclid Project
Teacher's Manual
The Euclid Project
Student's Manual
An Introduction
to Geometer's Sketchpad
Teaching Mathematics
"Teaching Mathematics Puncturing Space: A Developing Pedagogical Tool" uses a diverse
body of research to clearly introduce important ideas related to learning. Theories from
the fields of neurology and cognitive development about how students obtain, synthesize
and retain information are examined and cohesively presented.

With an in-depth discussion of how educators compete with predictable outside stimuli
as well as with the internal life of the student mind, Dr. Mason explains the idea of
using a combination of objects as pedagogical tools to 'puncture' the learning space to
re-engage the student and to re-establish attentive behavior.

This readable book is valuable to educators in all fields not just to those teaching
Mathematics, and not just to those teaching in lower and secondary schools. Educators
will think carefully and differently about how information is delivered and processed
in the classroom, after reading this book.
S.T.O.R.E.S.
(for teachers)
Structured Teaching of Research and Experimentation
Skills (S.T.O.R.E.S.) science curriculum for elementary
school and middle school students is a process oriented
approach, focusing on classical principles of induction
and deduction, evidence gathering, and hypothesis
building, and empirical testing and refinement of
hypotheses that highlights scientific procedures.
S.T.O.R.E.S.
(for students)
Structured Teaching of Research and Experimentation
Skills (S.T.O.R.E.S.) science curriculum for elementary
school and middle school students is a process oriented
approach, focusing on classical principles of induction
and deduction, evidence gathering, and hypothesis
building, and empirical testing and refinement of
hypotheses that highlights scientific procedures.
Sketchpad Basics
Handbook
Sketchpad Basics Handbook is designed to introduce elementary school and middle school students
and teacher to Geometer’s Sketchpad. The Sketchpad, is a construction tablet on which one draws models of geometric shapes, transforms them, colors them, measures them, and animates them. The models invite students to explore, represent, solve problems, construct, discuss, investigate, describe, and predict. Implicit to these functions is the ability to build mathematical models of simple and complex ideas. The Sketchpad allows students to engage in “doing mathematics,” which is emphasized in the National Council of Teachers of Mathematics (NCTM) Standards.

The investigations encourage students to work together in pairs and small groups, and to build on their knowledge by applying their knowledge to new information.

Sketchpad introduced through a series of explorations. All of the explorations are designed specifically to teach how to use the “tool box.” They represent technical exercises. That is, they teach how to use the drawing tools, and how to use the command menus to accomplish specific task. In some investigations students will replicate as set of instructions and then evaluate their findings. In other activities students are free to create their own investigation.
The Euclid Project
Teacher's Manual
The Euclid Project computer-based geometry program uses a scientific-experimentation approach to
providing middle school students with an intuitive un?derstanding of geometry as a precursor to the formal study of geometry later (e.g., in the 10th grade) and as a mediator for application of geometric understanding in a variety of contexts.

This scientific-experimentation approach to teaching geometry involves pre?senting the students with a mathematical hypothesis
(e.g., a line drawn across two sides of a triangle parallel to the third side divides the first two sides proportionally),
then having them use a “construction tablet” (Logo, Geometer Supposer, Geometer’s Sketchpad computer programs) to systematically
generate a series of cases to test the validity of the hypothesis (e.g., create a triangle and line parallel to a side,
then use animation to gener?ate a series of such triangles to see if the hypothesis holds for all of them).
The Euclid Project
Student's Manual
The Euclid Project computer-based geometry program uses a scientific-experimentation approach to
providing middle school students with an intuitive un?derstanding of geometry as a precursor to the formal study of geometry later (e.g., in the 10th grade) and as a mediator for application of geometric understanding in a variety of contexts.

This scientific-experimentation approach to teaching geometry involves pre?senting the students with a mathematical hypothesis
(e.g., a line drawn across two sides of a triangle parallel to the third side divides the first two sides proportionally),
then having them use a “construction tablet” (Logo, Geometer Supposer, Geometer’s Sketchpad computer programs) to systematically
generate a series of cases to test the validity of the hypothesis (e.g., create a triangle and line parallel to a side,
then use animation to gener?ate a series of such triangles to see if the hypothesis holds for all of them).
An Introduction to
Geometer's Sketchpad
This workbook is designed to introduce elementary school and middle school teachers to Geometer’s Sketchpad.

The Sketchpad, is a construction tablet on which one draws models of geometric shapes, transforms them, colors them, measures them, and animates them. The models invite students to explore, represent, solve problems, construct, discuss, investigate, describe, and predict.

Implicit to these functions is the ability to build mathematical models of simple and complex ideas.
The Sketchpad allows students to engage in “doing mathematics,” which is emphasized in the National Council of Teachers of Mathematics (NCTM) Standards.

Frank A. Moretti

Teachers seldom achieve a knowledge of their practice until now

 

  Plato made a useful distinction between having a knack for doing something and having the theoretical knowledge from which you proceed to do things.  It is unfortunately the case that, too often due to the stress and pressure of the circumstances of the teaching profession, that the teachers of our children seldom achieve a knowledge of their practice.  At their best, the knack they develop is one that works, but they would be hard pressed to explain why it does so.  There are times when a rare person, for mysterious reasons, transcends this set of circumstances and feels the inner necessity to locate practice in the context of theory.  Dr. Robert Emmett Mason IV, however, has taken on the challenge of integrating his range of experience in a way that goes beyond relating practice to theory.  Like a Presocratic philosopher, in the style of Heraclitus or Empedocles, he begins deeply within his own soul with dreams of fires and spheres.  Not a single dream, but over years he, a Euclidean Jung, searched these recurrent but changing promptings of the subconscious, for their meanings.  Out of these depths comes his compelling statements about math pedagogy and the triadic relationships that he sees as central to his theoretical constructs and practical success. 

            At the same time as Dr. Mason worked at the development of the psychology and epistemology of his pedagogy and sought answers, as many theorists, deep within himself, he nevertheless, remained fully cognizant that the world about him was undergoing a radical transformation due to digital technologies.  With this full awareness he chose to realize his theory in the context of digital tools with the hope that he would create new ways, consistent with his theoretical views on constructivist learning, of using the new technologies.  This “Statement,” the form of this written material represents the practical fruit of that effort as it was realized at the Dalton School.

            I have chosen to introduce this book by talking about the effort it represents in the life of its author.  Those of us who are constructivist educators have less interest in the memorials of the process of creating meaning and more interest in what the person, who constructs meaning, is and becomes as he does so.  This book represents a remarkable intellectual and educational spirit of which it is only the blossom of a moment.

 

                                                                       Frank A. Moretti, Ph.D.

                                                                       New York City

                                                                       1995

  • By Michael Sturm

    Robert Mason, affectionately known as Doc by both faculty and students, alike, has taught middle school math at Dalton for the last 20 years. ...

  • Frank A. Moretti, Ph.D

    There are times when a rare person, for mysterious reasons, transcends this set of circumstances and feels the inner necessity to locate practice in the context of theory. Dr. Robert Emmett Mason IV, however, has taken on the challenge of integrating his range of experience in a way ...

  • Kenneth Offit

    The Puncturing of Space: a Developing Pedagogical Tool by Dr. Robert Emmett Mason IV, does not fit an easy description. It is part authoritative teaching handbook, part textbook, and part philosophical discourse from a master pedagogue with thirty years teaching experience ...

  • Victoria Geduld

    Dr Robert E. Mason's Teaching Mathematics might seem far removed from productive pedagogical reading that would be assigned to an incoming Ph.D. teaching assistant in a History department. Indeed, this book should be mandatory for teachers in all disciplines at both the beginning and more advanced levels. ...